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Abstract

We propose a variation of a predictive system that incorporates two additional

economically motivated assumptions about the dynamics of expected market re-

turns, namely 1) a time-varying conditional volatility, and 2) their non-negativity.

The modified system without predictors can explain the well documented counter-

cyclicality of the dividend-price ratio’s predictive power, and can produce signifi-

cantly lower out-of-sample forecast errors than the historical mean, as well as some

improvement compared to the original system. Furthermore, the Bayesian estima-

tion of the model indicates that the persistence parameter of expected returns in

the modified system has been declining over the last couple of decades in tandem

with the sample autocorrelation of realized returns.
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1 Introduction

The estimation of expected stock market returns1, is a central issue in financial economics

from both theoretical and applied standpoints. The classic random walk paradigm as-

sumes expected market returns are constant implying nil return predictability, while the

increasingly accepted time-varying expected return paradigm implies some predictability

must exist.

The question of return predictability of the stock market has mostly been addressed

within the linear predictive regression framework (see for instance Keim and Stambaugh,

1986; Stambaugh, 1986; Ferson and Harvey, 1991; Pesaran and Timmermann, 1995; Stam-

baugh, 1999; Goyal and Welch, 2008; Lettau and van Nieuwerburgh, 2008; Rapach,

Strauss, and Zhou, 2010; Dangl and Halling, 2012). Several economic predictors have

been investigated, including the dividend yield (Fama and French, 1988; Campbell and

Shiller, 1988; Goyal and Welch, 2003; Ang and Bekaert, 2007; Cochrane, 2008), the in-

terest rates (Campbell, 1987), the term and default spreads (Campbell, 1987; Fama and

French, 1989), and the consumption-wealth ratio (Lettau and Ludvigson, 2001).

The regression approach has some limits, among which the fact that it assumes a

perfect linear relationship between the predictor(s) and expected returns. Recently Pástor

and Stambaugh (2009) introduced a predictive system allowing for imperfect predictors,

which is a richer environment than the standard predictive regression to analyze the

interactions amongst realized returns, expected returns and predictors.

Pástor and Stambaugh (2009)’s predictive system assumes that the unobservable ex-

pected return process follows an Autoregressive process (AR) of order 1, which has a

constant conditional variance. Motivated by empirical observations and economic theory,

we propose to use instead a discretization of a Cox, Ingersoll Jr, and Ross (1985) (CIR)

process to model the dynamics of expected market returns, which is a very parsimonious

departure from the original system, with no need of additional parameters. Unlike the

initial AR system, the CIR dynamics induce a continuously changing conditional variance

for expected returns that increases during market downturns (assuming expected mar-

ket returns are countercyclical). The motivation for a time-varying variance in expected

returns follows from the combination of two pervasive empirical facts in stock markets:

1) during economic and market downturns the variance of realized returns increases (see

1Unless explicitly stated otherwise, we use the term expected returns as a shorthand for expected

excess returns of the stock market over the risk-free rate or equity risk premium. Similarly, realized

returns stands for realized excess market returns.
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Schwert, 1989; Hamilton and Lin, 1996; Ait-Sahalia and Kimmel, 2007), and 2) the pre-

dictability of returns also increases during economic recessions (see Rapach et al., 2010;

Henkel, Martin, and Nardari, 2011). Return predictability is measured as the fraction of

the variance in realized returns explained by variations in expected returns, i.e. the R2

of the regression of realized returns on expected returns. It follows that the variance of

expected returns must increase during economic recessions to compensate for the variance

rise of realized returns. Furthermore, uncertainty about economic prospects also increases

during recessions, which can (arguably) be translated as an increase in the variance of

expected returns.

This paper does not investigate the predictive power of a given predictor, but focuses

instead on the implications arising from a modified interaction between past returns and

expected returns, due to the new dynamics of the latter. Hence our study concentrates

on the system without predictors, in order to present results that remain valid regardless

of the future choice of eventual predictors2. However, as Figure 3 illustrates, we find that

the conditional heteroscedasticity of expected returns in the CIR system without predic-

tors reproduces the countercyclical predictability of the dividend yield in the predictive

regression documented in former studies such as Rapach et al. (2010), Mantilla-Garcia

and Vaidyanathan (2011), and Henkel et al. (2011).

Another difference with Pástor and Stambaugh (2009)’s original system is that the

modified system also implies variations in the conditional variance of realized returns. If

expected returns are countercyclical, then the changes in the conditional variance of real-

ized returns produced by the modified system have a positive correlation with expected

returns and a negative one with realized returns, which is consistent with the empirical

observations in Ait-Sahalia and Kimmel (2007).

Moreover, the CIR-based expected return process has a negligible probability of be-

ing negative. This additional feature is compatible with economic intuition: risk-averse

investors would not hold stocks if the equity premium was negative3. In that sense,

Campbell and Thompson (2008) and Pettenuzzo, Timmermann, and Valkanov (2014)

have shown that the economically motivated belief of positive equity expected excess

returns can be used to improve the robustness of return forecasts within the predictive

regression framework. In our version of the system, the positivity condition is simply a

2In Appendix C we present the system in its general version with external predictors.
3Merton (1980) estimates instantaneous expected return on the market and concludes that: “in esti-

mating models of the expected market return, the non-negativity restriction of the expected excess return

should be explicitly included as part of the specification” (Merton, 1980, p. 323).
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result of the proposed dynamics of the expected returns process. This structural approach

allows us to explore the theoretical implications of this prior belief.

In our empirical analysis we find that the predictive system can produce return fore-

casts out-of-sample that are significantly better than the historical average, as well as

some forecast improvements relative to the original system, if economically motivated

priors are used for the parameters of the system. The results indicate that the modified

system produces better forecasts under the priors that expected returns are counter-

cyclical and display a relatively low variance. On the other hand, the estimation of the

persistence parameter of expected returns in the CIR system is less close to 1 than in the

AR system. Furthermore its value in the CIR system has been declining over the last

couple of decades in tandem with the sample autocorrelation of realized returns, which

contrasts with the higher and stable estimated value in the original AR system.

2 A predictive system with heteroscedastic and pos-

itive expected returns

In this section we present a short summary of Pástor and Stambaugh (2009) predictive

system and then introduce the modified version of the system along with its theoretical

implications.

2.1 Pástor and Stambaugh (2009)’s predictive system

Pástor and Stambaugh (2009) assume the following discrete dynamics for the realized

return r at time t+ 1:

rt+1 = µt + ut+1, (1)

where the innovation ut+1 is the “unexpected return”. The unobservable expected return

µ, follows a first-order autoregressive AR(1) process:

µt+1 = (1− β)Er + βµt + wt+1, (2)

where Er denotes the unconditional expectation of r, which is equal to the unconditional

expectation of µ and is constant in time; β is a constant persistence parameter assumed

to be within (0, 1) so that µ is stationary, and wt+1 is the innovation in the expected

return. We will refer later to this predictive system introduced by Pástor and Stambaugh

(2009) as the AR (autoregressive) system.
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Besides, they also consider a set of stationary (observable) predictors xt following

a first-order vector autoregressive VAR(1) process (a standard assumption in the pre-

dictability literature),

xt+1 = (I − A)Ex + Axt + vt+1, (3)

where Ex is the unconditional expectation of x, A is a matrix with suitable dimensions

containing the autoregressive coefficients and with eigenvalues lying inside the unit circle,

and v is gaussian noise. Furthermore, the three innovation processes above are assumed

to be correlated white-noise, independent and identically distributed across t as,
ut

vt

wt

 ∼ N



0

0

0

 ,


σ2
u σuv σuw

σvu Σvv σvw

σwu σwv σ2
w


 . (4)

Denote the covariance matrix in (4) as Σ. Notice that the interaction between predictors

and expected returns happens trough the correlation between their corresponding inno-

vations v and w. While in the standard predictive regression the correlation between the

predictor and expected returns is assumed to be perfect, as µt = a+ b′xt, for constant a

and b with suitable dimensions, the predictive system (1), (2), (3), (4) allows for “imper-

fect predictors” presenting a correlation with expected returns lower than 1 in magnitude.

This “imperfect correlation” implies that the estimated expected return depends on past

returns. Pástor and Stambaugh (2009) showed that the standard predictive regression is

a particular case of the predictive system in which the correlation between the innovation

in the predictor x and innovation in µ is assumed to be perfect, i.e., ρvw = ±1, and the

autoregressive coefficient of µ and x are equal, e.g., β = A if we consider one predictor.

Another distinctive characteristic of the predictive system is the presence of a corre-

lation between the innovation in µ and the innovation in r, i.e., ρuw. This correlation has

an impact on the relation between expected returns and past realized returns, and on

the relative importance of what Pástor and Stambaugh (2009) called the level effect and

the change effect in the system. The level effect captures the procyclicality of expected

returns, i.e., the extent to which observing relatively higher (lower) realized returns is

a signal of higher (lower) expected returns, while the change effect captures the extent

to which observing relatively higher (lower) realized returns is a signal of lower (higher)

expected returns (countercyclicality). For the change effect to dominate, ρuw must be

sufficiently negative. If the change effect prevails then expected returns are countercycli-

cal. Pástor and Stambaugh (2009) argue that the change effect should dominate the
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level effect and other studies such as Campbell (1991), Campbell and Ammer (1993) and

Binsbergen, Jules, and Koijen (2010) point in the same direction.

Equations (1), (2), (3) and (4) constitute a state-space model4 in which E(µt|Dt) =

E(rt+1|Dt), where Dt denotes the information set available at time t of observable quan-

tities r and x. Hence, a linear Kalman filter can be used to estimate the unobservable

expected return process5 µ.

In the Bayesian empirical analysis of the predictive system, Pástor and Stambaugh

(2009) used prior distributions of the input parameters of the system reflecting “the prior

belief that the conditional expected return µt is stable and persistent” (Pástor and Stam-

baugh, 2009, p. 1606). To capture the belief that µt is stable, they imposed a prior that

the predictive R2 from the regression of rt+1 on µt is not very large, which is equivalent to

the belief that the total variance of µt is not very large relative to the variance of realized

returns. To capture the belief that µt is persistent, they impose a prior that β, the slope

of the AR(1) process for µt, is smaller than one but not by much.

2.2 The CIR predictive system

Empirical evidence by Henkel et al. (2011) and others shows that return predictability

is markedly countercyclical, i.e., it is much stronger during economic recessions. Higher

predictability means that the percentage of the variance of realized returns explained by

variations in expected returns is higher. Hence, that evidence suggests that the variance

of expected returns should increase more during recessions than the variance of realized

returns. Furthermore, standard equilibrium models with risk-averse investors predict

positive expected returns (see for instance Merton, 1980, 1993).

The AR(1) process used in the original predictive system of Pástor and Stambaugh

(2009) to model expected returns does allow negative values and, more importantly, its

conditional variance is constant over time. We propose a very parsimonious departure

from the original system that does not introduce any additional parameters, but modi-

4Other studies on return predictability using state-space models include Conrad and Kaul (1988);

Lamoureux and Zhou (1996); Ang and Piazzesi (2003); Brandt and Kang (2004); Duffee (2007); Rytchkov

(2012).
5Pástor and Stambaugh (2012) presents an alternative state-space representation of the predictive

system where rt and xt follow a VAR process with an unobserved additional predictor but as they explain

this alternative representation is well suited for exploring the role of predictor imperfection which is not

our aim in this paper.

6



fies the governing equation of the expected return process in a way that integrates the

aforementioned economically motivated features.

Suppose that the true unobservable process µ follows a Cox et al. (1985) (CIR) model,

which is a continuous-time mean-reverting process given by the Stochastic Differential

Equation (SDE):

dµt = κ(θ − µt)dt+ σ
√
µtdWt, (5)

where the constant κ is the speed of mean reversion, θ the long-term level of µ, σ the

standard deviation of the diffusion term and W is a standard Brownian motion. The

CIR process rules out negative values of µ if its parameters satisfy the condition κθ ≥ σ2

2
,

along with µ0 > 0 (see Feller, 1951). Furthermore, the diffusion factor, σ
√
µt, induces a

process with a level dependent time-varying volatility that increases whenever the level

of µ increases. Thus, if the dynamics of µ are countercyclical, then its variance as well,

everything else equal.

The CIR’s SDE does not have an explicit closed-form solution6 for µ. Thus, in order

to develop the economic intuition and implications of the model, and to remain in the

discrete-time framework developed by Pástor and Stambaugh (2009), we work with a di-

rect Euler discretization of equation (5) under the assumption that the former realization

of µt is positive, that is:

µt+1 = (1− β)Er + βµt +
√
µtwt+1 given that µt ≥ 0, (6)

where Er = θ is the constant long-term mean, β = (1 − κ∆t) is the auto-regressive

constant, w is gaussian innovation with variance σ2
w = σ2∆t and ∆t is the time step

chosen in the discretization, i.e., the elapsed time between t and t + 1 in the time series

notation.

Appendix A and B present the mild technical conditions needed for the discretization

(6) to have a negligible probability to yield negative values for µ. In appendix C we derive

the expressions of the extended Kalman Filter algorithm for a general function g(µt) on

the diffusion term, instead of the particular case g(.) =
√
. of equation (6).7

Note that Pástor and Stambaugh (2009)’s AR(1) system is nested in the general

system derived in the Appendix with g(.) = 1. Also notice that the assumption that

6However the probability density of the solution of a CIR’s SDE can be computed in closed form.
7The derivation in appendix C includes the case g(.) =

√
|.|, which is well defined for µt < 0, unlike

equation (6). However, for simplicity of exposure we develop the economic intuition of the model in the

simpler case of equation (6) (refer to appendix A for a detailed discussion).
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equity expected returns are unlikely to be negative is introduced by a structural change in

the model instead of correcting the model outputs ex-post as in Campbell and Thompson

(2008)8 or imposing prior constraints on the input parameters as done by Pettenuzzo

et al. (2014) in the predictive regression.

Our (full) version of the predictive system is similar to Pástor and Stambaugh (2009)’s

AR(1) system discussed above but uses the state equation (6) for µ instead of equation (2),

while the realized return and predictors equations (1) and (3) as well as the multivariate

gaussian distribution assumption for the innovations in equation (4) are kept the same.

We refer to this new model as the CIR system in the rest of the paper.

We are not aiming to analyze the predictive power of a particular predictor, thus we

focus our study on the implications of the modified equation for µ, using the predictive

system without predictors, i.e., equations (1) and (6), as well as joint distribution of

innovations [ut wt]
′ in (4). In that sense, our analysis remains valid regardless of the

eventual predictors that could be integrated into the system, as our results concern the

relation between r and µ and are not dependent of a given predictor. In Appendix

C we present the equations of the general system including the possible interaction with

external predictors. Furthermore, in section 2.5 we discuss the relationship of the expected

returns filtered from the system without predictors (that uses only past realized returns)

to estimate µ with the outputs of the standard predictive regression using the dividend

yield as the predictor and find a remarkable relationship between the two estimates of µ,

when ρuw is assumed to be sufficiently negative.

In what follows we explore the theoretical implications of the CIR predictive system

and perform an empirical analysis using quarterly returns of the value-weighted index of

all NYSE, Amex, and Nasdaq stocks in excess of the quarterly return on 1-month T-bills

obtained from the Center for Research in Security Prices (CRSP). Following Pástor and

Stambaugh (2009) and other studies we begin our sample in 1952-Q1 after the Fed was

allowed to pursue an independent monetary policy. Our sample ends in 2012-Q4. As

mentioned above, in section 2.5 we compare the outputs of the system with a predictive

regression using the dividend-price ratio as the predictor variable. The latter is computed

as the sum of total dividends paid over the last 12 months divided by the current price,

using monthly stock returns with and without dividend on the value-weighted index from

8Campbell and Thompson (2008) show that the predictive regression subject to economic constraints

(including non-negativity of conditional mean of the equity premium) performs better than using the

unrestricted regression.
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CRSP.

2.3 Implications on R2 and the change and level effects

Assuming µt follows the dynamics in equation (6) has several key implications, including

the way in which past realized returns impact changes in expected returns. The implica-

tions follow from the mechanics of CIR-type processes9, in which the diffusion term of µ

becomes negligible and its mean reverting strength preponderant whenever µ approaches

zero. To see this, notice that from equation (6), it follows that,

µt+1 − µt = (1− β)(Er − µt) +
√
µtwt+1. (7)

Hence, whenever µt approaches zero, its diffusion term as well, making µt+1 much more

likely to increase driven by the mean-reversion term (1−β)(Er−µt). Notice as well that

the speed of mean reversion decreases with the level of the persistence parameter β, thus

being two competing effects on the dynamics of expected returns.

Pástor and Stambaugh (2009) explore the interesting temporal dependence of returns

in the predictive system using the Wold representation MA(∞) of the AR(1) process10. A

similar representation can be done for the CIR-type process applying backward iteration

of equation (6) and assuming the positivity of the trajectory, which yields:

µt = Er +
∞∑
i=0

βiwt−i
√
µt−1−i. (8)

Equation (8) shows that, unlike the AR system, in our setting past innovations on ex-

pected returns occurring at times when the level of µt is relatively higher, have a higher

impact in future expected returns than innovations occurring at times of low µt, every-

thing else being equal.

As discussed in section 2.5, this dependence on the level of µt implies variations in

both, the conditional variance of realized returns and the conditional variance of expected

returns, and such variance variations are correlated with variations in the level of expected

returns. If the change effect prevails over the level effect (as expected), these model

predictions are in line with empirically established properties of the variance of returns.

9Similar processes such as Constant Elasticity of Variance (CEV), which we also consider on the

derivation of the Kalman Filter in Appendix C, present the same type of mechanics.
10For the Wold representation of an AR(1) process see for instance Engle and Granger (1987), Anderson

(2011), Cochrane (2005) chapter 6.
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These effects are absent in the AR system, in which the filtered conditional variances of

realized and expected returns are constant over time after a small number of steps in the

Kalman filtering procedure.

Using equations (1) and (8), the return k periods ahead can be written as:

rt+k = Er +
∞∑
i=0

βiwt+k−1−i
√
µt+k−2−i + ut+k. (9)

Using equation (9) it can be shown that the autocovariance of rt is equal to (cf. Appendix

B for the derivation):

Cov(rt+k, rt) = βk−1

 βσ2
µ︸︷︷︸

level effect

+σuwE(
√
µt−1)︸ ︷︷ ︸

change effect

 , (10)

where σ2
µ is the unconditional variance of µ and is given by:

σ2
µ =

σ2
wEr

1− β2
. (11)

In Pástor and Stambaugh (2009)’s predictive system the expressions for the autocovari-

ance of rt and the variance of µ are equal to equations (10) and (11), except that the

unconditional expectation terms, E(
√
µt−1) in (10) and Er in (11), do not appear. As we

will see, equations (10) and (11) have important implications for the predictive system.

The R2 of the regression of rt+1 on µt captures the fraction of variance in rt+1 explained

by variations in µt. Hence it measures the level of predictability of r and is defined as,

R2 =
σ2
µ

σ2
r

= 1− σ2
u

σ2
r

, (12)

then, a lower variance for µ implies a lower R2. From the corresponding expressions for

σµ for the AR and CIR systems, we have,

R2
ar =

σ2
w,ar

σ2
r(1− β2

ar)
, (13)

R2
cir =

σ2
w,cirEr

σ2
r(1− β2

cir)
, (14)

where the ar and cir subscripts indicate the system considered. In what follows we discuss

two opposite cases to analyze the theoretical implications of the system modification.

First, we keep σw, β and ρuw equal in both systems, which yields differences on R2 and
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on the relative importance of the change and level effects. Second, we assume that both

models have the same R2, β and ρuw, in which case the change and level effects have

the same relative weights in both systems and the parameter adjustment to get the same

R2 is done trough σw. Afterwards in sections 2.4 and 2.5 we further pursue these two

comparative analyses with numerical examples.

On the one hand, notice that equations (10) and (11) imply that, if E(
√
µt−1) < 1

and Er < 1 (a very mild assumption given historical returns), in the CIR system the

variance of expected returns and the autocovariance of returns would be lower than in

the AR system, everything else equal, that is, assuming σw, β, ρuw are equal for both

models. Intuitively, this result steams from the fact in the CIR system µt must vary in a

limited space of feasible values, unlike in the AR system for which µt can take negative

values. Mechanically, we can see that expected returns innovations w are weighted by

the previous value of
√
µ in equation (7) and thus, the size of the random shock in µt+1

is much smaller in the CIR system than in the AR system when µt approaches zero,

everything else being equal.

As Pástor and Stambaugh (2009) point out, the level and change effects can be

“mapped” into the autocovariance of r. For ρuw < 0, whenever βσ2
µ < −σuwE(

√
µt−1)

returns are negatively autocorrelated, and the change effect prevails. Hence, ρuw needs to

be “sufficiently negative” for this to happen. Setting σw, β, ρuw in the CIR system equal

to the corresponding parameters of the AR system induces a change in the relative weight

of the two terms reflecting the change and level effects in equation (10) with respect to

the AR system, through the E(
√
µt−1) and Er terms in the variance and autocovariance

expressions. Assuming E(
√
µt−1) ≈

√
Er, and Er < 1 then Er <

√
Er; thus the change

effect would have a larger relative weight in the return autocovariance of the CIR system

(10) relative to AR system, keeping σw, ρuw and β constant (regardless of the level of Er

as long as Er < 1).

Indeed, in the CIR system, the knife-edge value of ρuw, i.e., the value such that the

change and level effects exactly offset each other in (10) is:

k-e ρuw =
−βcir σw,cir
σu(1− β2

cir)
× Er

E(
√
µt−1)

. (15)

This expression is equal to the knife-edge of the AR system, except for the ratio Er

E(
√
µt−1)

(which is absent in the AR system). As a consequence, for equal σw, β, ρuw, the knife-

edge value of ρuw for the CIR system would be closer to zero (i.e., less negative) than for

the AR system as Er

E(
√
µt−1)

< 1. This would imply a less restrictive condition on the level

of ρuw for the change effect to prevail.
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On the other hand, notice that the autocorrelation at k lags of returns in the CIR

model can be written as a function of R2, β and ρuw,

Corr(rt+k, rt) = βk−1
cir

(
βcirR

2
cir + ρuw

√
(1−R2

cir)R
2
cir(1− β2

cir)
E(
√
µt−1)
√
Er

)
, (16)

which follows from equation (10) and noticing that σ2
µ = R2σ2

r , σ
2
u = (1 − R2)σ2

r and

σ2
w,cir =

R2
cirσ

2
r(1−β2

cir)

Er
. The autocorrelation expression (16) is equal to the autocorrelation

of the AR system (see Pástor and Stambaugh, 2012, equation 22) except for the ratio
E(
√
µt−1)√
Er

. Assuming E(
√
µt−1) ≈

√
Er, the term cancels out11 in (16), thus if the two

systems have equal R2, β and ρuw then the level and change effects have the same relative

weight in both systems. Another way to see this, is equating (13) and (14), i.e., if

R2
ar = R2

cir then σ2
w,ar = σ2

w,cirEr and the extra ratio in the knife-edge formula (15)

disappears, yielding the same expression in both systems.

Equation (14) shows that R2
ar and R2

cir are likely to diverge whenever Er is relatively

close to zero, while they should tend to be closer as Er is further from zero (more on this

in section 3.1). Thus, the difference in R2 between the two systems is likely to be more

accentuated for higher return frequencies (e.g., Er is closer to zero for quarterly than for

yearly return).

Investors may have priors on R2 (as in Pástor and Stambaugh, 2009; Kvašňáková,

2013) or β (as in Pástor and Stambaugh, 2009), while intuition for σ2
w is less clear and

σ2
r is almost observable and strictly equal for both models. Thus, in our out-of-sample

Bayesian analysis (section 3.3) we use the same priors as in Pástor and Stambaugh (2009)

for β and ρuw in both systems, and choose prior distributions for σ2
w,ar and σ2

w,cir such that

the prior distribution of R2 is equal in both systems. As we will see from the posterior

distributions of β (Panels A and B of Figure 10), βcir tends to be smaller than βar, and

to steadily decrease over time from 1975 to 2012. Hence, µt tends to be less persistent

in the CIR system. This result is consistent with the discussion of equation (7) above,

since µ should have a higher speed of mean reversion (lower β) whenever it approaches

zero; an effect absent in the AR system. The result indicates that, while most of the

adjustment in parameters to obtain the same R2 happens through σw, some of it can be

due to differences in β. Notice that the relative weight of the term reflecting the level

11The square root of the sample average (unbiased estimator of the expected value) is a consistent

although biased estimator of the expected value of the square root of the sample average (see for instance

Barreto and Howland, 2006, p. 396). In our in-sample analysis of sections 2.4 and 2.5, we find empirically

that the ratio
E(√µt−1)√

Er
ranges between 0.99 and 1.00 for the R2 and ρuw considered.
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effect in equation (10) increases with the level of β. Thus, the more persistent expected

returns are, the more important the level effect is. Conversely, the lower the variance of

expected returns, σ2
µ, the weaker the level effect relative to the change effect, indicating

that the change effect can be even more likely to prevail in the CIR system.

Another variation of the widely used AR(1) representation for expected returns has

been introduced in Van Binsbergen and Koijen (2011). In their specification, when µt

gets closer to zero, its value is more likely to be pushed back to its long term mean rather

than decrease, as in the CIR system. In Van Binsbergen and Koijen (2011), this effect is

due to the time-varying autoregressive parameter but the conditional heteroscedasticity

of µ introduced in our predictive system is not present in their model.

In order to further explore the implications of the model, in what follows we perform

an in-sample comparison of the two systems for the same stock market series. In section

II.B, Pástor and Stambaugh (2009) tested different values for ρuw to see its impact on the

predictive system outputs. Their analysis is performed assuming β = 0.9, R2 = 5% and

using the sample estimates for σr and Er in the system without predictors. In that case,

all other parameters needed to estimate µ are functions of the parameters mentioned.

The last row of Table 1 presents the numerical values of the parameters used in Pástor

and Stambaugh (2009) section II.B, adjusted using the updated sample estimates for Er

and σr. Hereafter, we explore in section 2.4 the implications for the CIR system by first

setting σw,cir = σw,ar (leading to different R2 for each system), which corresponds to the

first row in Table 1 for the CIR system and the last row for the AR system, and then in

section 2.5 comparing the two systems with the same level of R2 (using the parameters

in the last row of Table 1 for both systems).

2.4 In-sample analysis of AR and CIR systems with implied

differences in R2

In order to explore the role of ρuw in determining expected returns in the predictive

system, Pástor and Stambaugh (2009), section II.B, work with a base-case parameter

set for β, σw, σr, Er, and R2 in the AR system. In what follows, we present a similar

steady-state in-sample analysis for the CIR model and compare our results with the AR

system for the same values of β, σw, σr and Er for both systems. The parameters in the

first row of Table 1 correspond to the CIR system while the last row corresponds to the

AR system of Pástor and Stambaugh (2009) section II.B (for the updated sample).
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As pointed out above, using the CIR-based system we expect a lower variance for µ

(and thus a lower R2: 5% and 0.09% for the AR and CIR respectively) for the same σ2
r

and σ2
w. Hence, for given values of σ2

r and σ2
w, this implies a greater variance for u with

respect to the AR system. Keeping the same variance of realized returns, we use the

same value of 0.0082 for σw, which implies σu =
√
σ2
r − σ2

µ =
√
σ2
r −

σ2
wEr

1−β2 , leading to a

slightly higher value of σu = 0.0838, compared to 0.0817 in the AR system.

For these parameter values and assuming Er

E(
√
µt−1)

≈ 0.0177√
0.0177

= 0.133 yields a knife-

edge value (15) in the CIR system of ρuw ≈ −0.06. This contrasts with the knife-edge

value of ρuw = −0.47 of the AR system12. This implies that the change effect can prevail

over the level effect in our setting for a much larger range of values of ρuw with respect

to the original system, everything else equal. In other words, there is a less restrictive

condition on the value of ρuw for the change effect to dominate. This suggests that in

the CIR version of the predictive system lagged returns deviations from Er are more

likely to have a negative weight on conditional expected return estimates. In this section,

we perform our analysis using three values of ρuw in each system, i.e., -0.85 (this value

corresponds to a dominant change effect for both systems and is used in the base-case

analysis of Pástor and Stambaugh, 2009), the midpoint between -0.85 and the knife-edge

values corresponding to each level of R2 and the k-e ρuw (equivalent to historical mean,

i.e., nil predictability benchmark)13. Hence as explained above, the three values of ρuw

considered for the AR system will be much closer to each other than the values of ρuw for

the CIR system, due to the larger range of ρuw corresponding to a dominant change effect

in our modified system. It is interesting to note that the knife-edge value for the AR

system (-0.47) is almost equal to the second ρuw considered for the CIR system (-0.46),

i.e., for ρuw around -0.46 the change effect is nil for the AR system whereas it is dominant

for the CIR system, in this configuration.

Using the Kalman filter, the conditional expected return can be written as the uncon-

ditional expected return mean plus linear combinations of past return forecast errors14,

where forecast error for the return in each period is defined as εt = rt−E(µt|Dt−1). Then

12In any case, µt being a priori less than one (which is a reasonable assumption), we should have

E(µt+1)
E(√µt)

= Er

E(√µt)
< 1 which is in line with our analysis.

13We dot not consider a value of ρuw corresponding to a dominant level effect as there are several

academic results in favor of a dominant change effect (see section 2.1).
14In the case where predictors are used, an additional term containing innovations in the predictors is

added to equations (17), (18) and (20), for details, see Appendix C.
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the expected return conditional on the history of returns can be written as

E(µt|Dt) = Er +
∞∑
s=0

λsεt−s, (17)

where λs = βsm, and m is the steady-state filter parameter. The conditional expected

return can also be written as a function of past returns instead of past forecast errors as

follows:

E(µt|Dt) = Er +
∞∑
s=0

ωs(rt−s − Er), (18)

where, in steady state,

ωs = (β −m)sm. (19)

Equations (17) and (18) have the same structure than the equivalent expression in the

original predictive system, but the coefficient m is modified, leading to different predic-

tions. The derivation of the steady-sate values of m for the CIR system is provided in

the Appendix C, equation (63).

The conditional expected return depends on the true unconditional mean, Er. Using

the sample mean to estimate Er in equation (18) and truncating the summation in the

right-hand side to s = t− 1, yields an estimate of the expected return E(µt|Dt) equal to

a weighted average of past returns, i.e.,

E(µt|Dt) =
t−1∑
s=0

κsrt−s, (20)

where

κs =
1

t

(
1−

t−1∑
l=0

ωl

)
+ ωs, (21)

and
∑t−1

s=0 κs = 1. This expression has the same form than in the AR system. However,

the ωs are functions of m, which has a different expression in the CIR system that depend

on the values of µ. The expression of m for the CIR system is provided in equation (63)

of Appendix C.

Similar to the AR(1) predictive system of Pástor and Stambaugh (2009), whenever the

change effect is greater than the level effect, i.e., the covariance term in the autocovariance

(10) is larger than βσ2
µ, then m < 0 for sufficiently negative ρuw (see Appendix C).

However, for given values of β, σw and σr, in the CIR-based version of the system the

(absolute) values of m are much smaller in magnitude than the ones implied by the
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AR-based original system. This also implies smaller values (in absolute value) of κs

(presented in Figure 1) and λs, ωs (which look very similar to κs and are unreported for

space consideration).

Figure 1 displays the respective values of κs (weights on lagged returns), for the AR-

based predictive system (as given in Figure 1, Panel B of Pástor and Stambaugh, 2009),

and for the CIR-based predictive system, for the base-case parameter set aforementioned.

First, as the figure shows, the range for κs in the CIR-based system is much closer to

zero for different values of ρuw than for the original AR(1)-based system, with κs ∈
[−0.0062, 0.0046] for the CIR and κs ∈ [−0.0387, 0.0076] for the AR system. This implies

that large lagged returns have a much smaller impact in future estimates of expected

returns (see equation 20) in the CIR system, which is consistent with the lower variance

of µ implied by equation (11). Second, for dominant change effect, while the AR system

in this case gives negative weights to past returns of up to 40 lags (10 years) and positive

weights to older returns, the CIR system assigns negative weights to past returns only up

to 10 lags (2.5 years) and positive weights otherwise. This can be interpreted as the CIR

system having a change effect with shorter memory. Third, the past returns weights in

the CIR system is much closer to an equal weighted average of past returns (i.e., historical

mean) while the AR system presents more disperse weights. Fourth, the weights of the

CIR system are less sensitive to the level of ρuw than the weights in the AR system, due

to the lower R2.

Interestingly, from Figure 1 it can also be observed that the rate of decay of κs is

much larger for the CIR system than for the AR system. As a consequence, the impact

of the latest return, rt−1 is much larger than the impact of the return from two periods

ago, i.e., |κ1| � |κ2| in the CIR system than for the AR system. This implies for instance

that, although variations in the AR are larger in absolute terms, a negative return after

a series of positive returns will generate a larger correction, in relative terms, of E(µt|Dt)

in the CIR system.

Panel A of Figure 2 reproduces the time series of the quarterly equity excess return

estimates from Pástor and Stambaugh’s AR system for the three different values of ρuw

considered (similar to Figure 2 of Pástor and Stambaugh, 2009). Panel B of Figure 2

presents the conditional equity premium estimates using the CIR system with equal σw,

β, Er and σr (which correspond to the parameters in the first and last rows of Table 1

for the CIR and AR systems respectively). A striking result is the large difference in

variance between the two series. While the AR-based quarterly return estimates vary

between -0.2% (-0.8% annually) and +5.2% (+20.8% annually) for ρuw = −0.85, for the
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CIR system, estimates of µ are well above zero and vary between +1.4% (+5.7% annually)

and +2.6% (+10.2% annually). Besides this, it is noteworthy that the estimates from the

AR system are much more sensitive to changes in ρuw.

Recall the analysis above is done for a given level of σw in both models. Hereafter we

present a different analysis that explores the model implication by adjusting σw for the

CIR system in order to keep R2 equal in both models.

2.5 Can the CIR system explain the countercyclical predictabil-

ity of the dividend-price ratio?

In the previous subsection, keeping the same value of σw yields a different value of R2 for

each system, due to the different dynamics of µt. The R2 values were 5% and 0.09% for

the AR and CIR systems respectively. We now set R2 = 5% in both systems, maintain β,

σr and Er equal and set σw,ar and σw,cir such that the variance of µ is equal to 5% of the

returns sample variance, i.e., σ2
µ = 0.05 × σ2

r . The resulting parameters of both systems

are reported in the last row of Table 1. As mentioned above, if R2 and β are equal in

both models, then the knife-edge value of ρuw is equal in both systems as well (using the

approximation E(
√
µt−1) ≈

√
Er).

For a given level of R2 and β in both systems (adjusting the level of σw so as to obtain

the same R2) we find that the two systems produce very similar numerical results for µ

if the steady-state formula for m is used. However, while the finite-sample estimates of

mt converge fast to the steady-state value in the AR system, this is not the case for the

CIR system. In effect, given its dependence on the current level of µ, the finite-sample

values of mt present significant variations over time around the steady-state value. This

feature has important implications for the conditional variance of µ which also implies a

time-varying predictability of returns.

Whenever the change effect prevails, i.e., ρuw is sufficiently negative, during long

stock market declines the level of µ increases which induces an increase in its conditional

variance. This link between the level and variance of µ can be seen directly from the

modified dynamics of µ with the CIR system in equation (6), where the standard deviation

factor is
√
µσw,cir which contrasts with the constant σw,ar of the AR system. Figure 3

Panel A presents the square root of the filtered values of Var(µt|Dt), for the CIR and

AR systems (without predictors) in finite-sample, when ρuw is set to -0.85. Moreover,

Panel A of Figure 3 also presents the conditional variance of fitted values from a standard
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OLS predictive regression using a rolling window with the latest 30 years of data as in

Fama and French (1989), using the dividend-price ratio as the predictor variable x. Hence

for the latter regression, we calculate the conditional variance of µ as: squared slope b2,

multiplied by the variance of x (i.e. the dividend-price ratio), both estimated using the

latest 30 years of data. We observe that the conditional variance of µ for the CIR system

increases significantly during economics recessions (grayed areas in the figure) as reported

by the National Bureau of Economics Research. Similar increases are observed for the

predictive regression using the dividend-price ratio, while the conditional variance of µ in

the AR system is constant over time. A potential consequence of this is that the portion

of variance of realized returns explained by variations in µ, i.e., R2, might increase during

market downturns.

Henkel et al. (2011) finds that the conditional R2 of a predictive Regime-Switching

Vector Autoregressive model presents significant variations across the business cycle, using

several predictors including the dividend yield. In order to compute a time-conditional

R2 in our rolling predictive regression we calculate,

R2(t+ 1|Dt) =
σ2
µ(t|Dt)

σ2
r(t+ 1|Dt)

, (22)

where σ2
µ(t|Dt), the conditional variance of µ, is calculated as explained in the previous

paragraph, and σ2
r(t + 1|Dt), the conditional variance of returns, is estimated using the

sample estimate for the variance of r with the latest 30 years of data. Notice that the

term (22) is similar in spirit to to the conditional R2 considered in Henkel et al. (2011).

Similarly, we calculate the conditional R2 of the CIR and AR predictive systems as

given by the right-hand side of (22), using the corresponding filtered values for σ2
µ(t|Dt)

and σ2
r(t + 1|Dt) which correspond to the quantities Qt and the first component of St+1

in the notation of the Kalman Filter in Appendix C. Panel B of Figure 3 presents the

conditional R2 of equation (22), i.e., the ratio of the conditional variances of µt and rt+1

for both systems and for the (rolling) predictive regression using the dividend yield.

The time series of the conditional R2 of the CIR system without predictors and the

corresponding series of the predictive regression present remarkably similar dynamics,

increasing and decreasing over time in tandem. Moreover, the conditional R2 increases

during economic recessions. We find a qualitatively equivalent result when using the same

conditional variance estimate of returns used in the predictive regression instead of the

first component of St+1 in the formula of the conditional R2 of the CIR system (unreported

for space considerations). This result confirms the counter-cyclicality of the predictability

of the dividend yield documented by Henkel et al. (2011). More importantly, it shows that
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the CIR predictive system without predictors can structurally explain the countercycli-

cal dynamics of return predictability, an effect absent in the original AR system which

presents a constant conditional R2 as shown in Figure 3 Panel B. Interestingly, in both

panels of Figure 3, we note that after 2000, the curves corresponding to the CIR system

and dividend-yield regression start to diverge significantly in terms of level. Goyal and

Welch (2003) highlight an instability of dividend price ratio autoregression coefficient,

which has increased from about 0.4 in 1945 to about 0.9 in 2000 according to their esti-

mation procedure. This observation may explain the behavior of the predictive regression

curves in Figure 3 as an increasing autoregression coefficient implies a lower conditional

variance in dividend yield and thus a lower conditional R2. This effect is absent in the

CIR system as the parameters used in this configuration are constant over time.

Another interesting implication of the modified dynamics of µ is that the finite-sample

CIR system produces a conditional estimate of the variance of realized returns that varies

over time as well. On the other hand, the conditional variance of rt for the AR system

converges fast and stabilizes to a constant steady-state value. Figure 4 presents the

evolution of the finite-sample filtered volatility of rt, i.e., the square root of Var(rt|Dt−1)

for both systems (given in equation 45 in Appendix C), with ρuw = −0.85 (dominant

change effect for both systems), as well as the log-cumulated excess returns of the market.

In contrast with the AR system, for which the filtered volatility reaches fairly fast a steady

value (this behavior is observed for all ρuw, unreported), in the CIR system the volatility

evolves depending on the level of µ, and therefore on the level of r. We can see on Figure

4 that the volatility reaches its maximum (resp. minimum) values when µt is high (cf.

dotted lines on Figure 2), thus during periods of low (resp. high) realized returns. In

other words, the conditional volatility of r in the CIR model is positively correlated with

µt. At the same time, µ is negatively correlated with r, and hence the variance of returns

implied by the finite-sample filter of the CIR system is countercyclical, as illustrates

Figure 4. This model prediction is consistent with the commonly observed fact that the

volatility of stocks increases as its price falls, for standard empirical variance estimates

(see for instance French, Schwert, and Stambaugh, 1987; Engle, 2001; Ait-Sahalia and

Kimmel, 2007).

The changing dynamics of µ in the CIR system can also be mapped in the dynamics

of the coefficients connecting the realized returns and expected return estimates of the

system. As Figure 5 shows, unlike the AR system, the CIR system has a “conditional-

memory” (conditional on the phase of the market). In effect, the lagged coefficients

κ and also λ, ω (unreported for space consideration) of the CIR system are different,
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whether they are calculated after a series of positive realized returns or after a series

of negative realized returns. In order to illustrate the “conditional-memory” of the CIR

system we consider two sub-periods of the total sample, i.e., 1952Q1 to 1999Q4 (end of

the bull market of the IT bubble), and 1952Q1 to 2002Q4 (end of the bear market after

the IT bubble bursts). Figure 5 presents the corresponding values of the finite-sample

coefficients κ (the behavior of λ and ω coefficients is similar), for both systems calculated

at the end of the two sub-periods. From the figure we see that in the CIR system the

latest observations have a larger impact in expected returns following a falling market

than after a rising market (when change effect dominates). This effect is induced by the

proximity of µt to its lower bound (zero) after a long bull market, as further positive

returns cannot push µt much further down.

We observe a remarkable difference in the shape of the corresponding coefficients

curves for the two systems. Indeed, the rise from the most negative values of the coeffi-

cients corresponding to the lower lags (i.e., most recent values) toward zero of the curve

of κ, is much sharper in the CIR system. As a consequence, similar to the former analysis

with equal σw, this implies that the latest return will induce a larger (relative) correction

of the estimate of µt in the CIR system relative to the AR system. To see this, consider

any two lag indices l1 and l2 such that 0 < l1 < l2 < 20 (notice that the lower lag l1

refers to a more recent observation than l2) in Figure 5, and remark that15 |κ
cir
l1
|

|κcirl2
| >

|κarl1 |
|κarl2 |

.

Unlike the former analysis of section 2.4, in which κ (and λ, ω) corresponding to the lat-

est observation were much smaller in absolute value in the CIR relative than in the AR

system, in this case, the coefficients of the lower lags are also larger in absolute terms for

the CIR system, i.e., |κcir1 | > |κar1 |. Thus, the CIR system gives more (negative) weight

to the latest observations than the AR system. This effect is due to a higher time depen-

dence of mt with respect to the corresponding terms in the AR system (cf. Appendix C),

and it is also observed in the weights calculated at the end of the total sample, 2012Q4

(unreported for space considerations).

Panel A and C of Figure 2 present the filtered equity premium, E(rt+1|Dt), for the two

systems on the overall sample period when their R2 is set to 5%. We note in particular

that the level of µ reaches larger maximum values in the CIR system (Panel C) than in

the AR system (Panel A), while it tends to slow its variations much faster as it approaches

zero as suggested by the dynamics of the CIR model.

15We also observe
|λcir

l1
|

|λcir
l2
| >

|λar
l1
|

|λar
l2
| and

|ωcir
l1
|

|ωcir
l2
| >

|ωar
l1
|

|ωar
l2
| , unreported here.
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3 Empirical out-of-sample analysis

In this section we present an out-of-sample analysis of return predictability using a

Bayesian approach for estimating the predictive systems. First, we discuss the impli-

cations of using the CIR system on the priors on parameters distributions. Then we

conduct an exploratory analysis using point estimate parameters for implementing the

systems. Finally, we present our Bayesian analysis and out-of-sample results.

3.1 What are plausible values for R2, β and Er?

The empirical implementation and estimation of the predictive system in a Bayesian

setting needs a set of priors on the distribution of the parameters involved. These priors

should represent a plausible parameter set, compatible with the hypotheses behind the

system. Unlike Pástor and Stambaugh (2009)’s AR system, one of the motivations to

use the CIR system is the assumption that the expected return process is unlikely to be

negative. Hence, the priors used to implement the CIR system should be compatible with

this hypothesis. In this section we discuss the plausible values for the R2 of the regression

of rt+1 on µt, the persistence parameter β and the long-term mean Er using the same

market and sample as in Pástor and Stambaugh (2009) and in sections 2.4 and 2.5 above.

The CIR continuous time model ensures the non-negativity of the process µ in equation

(5) if the parameters respect the condition κθ ≥ σ2

2
(Feller, 1951), which can be translated

in terms of the parameters of the discretized process as :

(1− β)Er ≥
σ2
w

2
. (23)

By definition of σµ, condition (23) also implies an upper bound for σ2
µ in the CIR model:

σ2
µ =

σ2
wEr

1− β2
≤ 2(1− β)E2

r

1− β2
. (24)

Furthermore, using an estimate for the variance of realized returns σ2
r , this condition also

provides an upper bound for the R2 from the regression of rt+1 on µt since by definition

(12) it follows that,

R2 =
σ2
µ

σ2
r

≤ 2(1− β)E2
r

(1− β2)σ2
r

. (25)

This means that, for a given set of plausible values for Er and β, the CIR positivity

condition (23) restrains the possible value set for σµ, and for R2 for a given estimate of

σr. On the other hand, there is no such internal coherence restriction in the AR system
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as there is no positivity constraint. From condition (23) and equation (25), it follows

that to estimate the upper bound of R2 for the CIR system, we need to get: 1) E∗r : the

highest plausible value of Er, and 2) β∗: the lowest value for β. Considering the return

sample used in Pástor and Stambaugh (2009), to estimate the highest plausible value of

Er, we calculate max(Êr(1, ..s0)) for a sample of size s0 for s0 = {80, 81, ...208}, where 80

points corresponds to a minimum sample period of 20 years and 208 is the total sample

size of quarterly data from 1952-Q1 to 2003-Q4 used in Pástor and Stambaugh (2009),

which yields E∗r = max(Êr(1, ..s0)) = 0.0226 (9% p.a.). Second, we use the 5% quantile

of the prior distribution of β in Pástor and Stambaugh (2009), i.e., β ∼ N (0.99, 0.152),

hence β∗ = 0.99 + 0.15× z(5%) = 0.743, where z(5%) denotes the 5% quantile of a random

variable with standard normal distribution. These two estimates for E∗r and β∗ within

condition (23) together with the sample estimate of σ̂r = 0.0837 yields an upper bound

for the R2 in the CIR system of 8.37%. This upper bound is in line with Pástor and

Stambaugh (2009)’s statement that a plausible prior distribution of R2 would have most

of its mass being below 5% and a mode around 1% for the US stock market quarterly

data sample considered.

Note that, using the knife-edge formula of ρuw, it is possible to derive bounds for

the persistence parameter β in order to have a plausible knife-edge value, for both, the

AR and CIR systems for a given value of R2. Considering a knife-edge value within

the interval [-1, 0] is equivalent to not excluding the possibility that the change effect

dominates over the level effect. Notice that, if ρuw > 0 there is no change effect at all. If

the knife-edge value of ρuw of the AR system is between -1 and 0 then,

|k-e ρuw| =
∣∣∣∣ −βσwσu(1− β2)

∣∣∣∣ < 1. (26)

From the definition of R2 and σµ for the AR system, notice that, σ2
w = (1− β2)R2σ2

r and

σ2
u = (1−R2)σ2

r . Replacing these in inequality (26) and squaring yield,

R2β2

(1−R2)(1− β2)
< 1

|β| <
√

C

1 + C
(27)

where C = (1−R2)
R2 , which simplifies to |β| <

√
1−R2. For instance, if R2 = 5% the upper

bound of β is 0.97. A similar calculation using the knife-edge value for the CIR system

(equation 15) yields the bounds for β in the CIR model which are given by (27) but

with C = (1−R2)
R2Er

. The consistency condition (27) implies an inverse relationship between

22



R2 and the maximum feasible persistence parameter of µ. If one believes that µ is very

persistent and we do not preclude the possibility that the change effect dominates over

the level effect then the R2 cannot be very high and viceversa.

The positivity condition (23) implies a long-term mean strictly positive, i.e., Er > 0.

Pástor and Stambaugh (2009)’s prior distribution for Er is Gaussian with a “large” 1%

standard deviation around its sample mean, denoted Êr (see p. 9 of the internet appendix

in Pástor and Stambaugh, 2009). In effect, the 1% quantile of such distribution is a

negative number, which is incompatible with the CIR model assumption, especially if we

consider that the presumably positive process µ should vary around Er. Indeed, assuming

that expected returns are non-negative implies that the long-run average of µ, Er should

be“far enough”from zero. Thus, a plausible value for the variance of the prior distribution

of Er should be lower than 1% for the CIR system. For instance, given that the prior

for the distribution of Er is symmetric, one may assume that the distance between the

sample mean Êr = 0.0185 and its highest plausible value of E∗r = 0.0226 (see calculation

above), is the same distance between Êr and a low quantile of its distribution. We deduce

σEr as follows. Assume Êr + σErz(5%) = Êr − (E∗r − Êr), hence

σEr =
(Êr − E∗r )
z(5%)

,

which is 0.25% for the sample estimates mentioned above, thus about four times smaller

than the prior standard deviation of 1% used in Pástor and Stambaugh (2009) for the

AR model. This choice ensures a positive 1% quantile for the prior distribution of Er.

3.2 Out-of-sample return prediction using point estimate pa-

rameters

In what follows we present the results of an exploratory analysis which consists in an

out-of-sample return prediction exercise of quarterly returns of the value-weighted CRSP

US aggregate stock market index in excess of the quarterly return on 1-month T-bills

obtained from the Center for Research in Security Prices (CRSP). Following Pástor and

Stambaugh (2009) and other studies we begin our sample in 1952, as in our in-sample

analysis of sections 2.4 and 2.5. In order to address concerns regarding the dependence of

predictability evidence on the oil price shocks period 1973−1974, we set our out-of-sample

period to 1975-2012 for this first analysis. We also consider additional out-of-sample

periods in the Bayesian analysis of section 3.3.
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In order to estimate µ, we use the predictive systems without predictors, with fixed

values for the models parameters. Every quarter we estimate Er and σr using the pre-

vailing sample estimates at each point in time and we set the R2 of the regression of

rt+1 on µt equal in both models, with R2 = 0.5%, 1%, 2%, 3%, 4%, 5%. We consider two

plausible values for the persistence parameter of β = 0.9 and then β = 0.8 (kept constant

throughout the entire period). Furthermore, we perform predictions using several values

of ρuw, i.e., from -0.95 to 0.95 with a step of 0.05. All other parameter values in the

systems follow from their corresponding definitions.

Following former studies such as Goyal and Welch (2008), we assess out-of-sample pre-

dictive power with the out-of-sample (OS) R2
OS introduced by Campbell and Thompson

(2008),

R2
OS = 1− MSEpred

MSEmean
, (28)

where MSEpred is the mean squared error of the model predictions and MSEmean is

the mean squared error of using the prevailing return’s historical average as estimate

of expected return. This metric evaluates weather a given system produces more accu-

rate predictions than the no-predictability random walk benchmark, i.e., the prevailing

historical average.

The overall results are presented in Figure 6 for β = 0.9, and Figure 7 for β = 0.8.

The two figures present the R2
OS for each system, as a function of ρuw, when setting the

R2 of the regression of rt+1 on µt to a given value in {0.5%, 1%, 2%, 3%, 4%, 5%}. The

grayed areas in both figures correspond to values of ρuw implying a dominant change

effect.

First, we observe that the highest R2
OS for each system are obtained with different

priors on R2 and β. The highest R2
OS across all parameter combinations considered

corresponds to the CIR system (3.39%), with β = 0.8 and R2 = 2%. On the other

hand, the highest R2
OS for the AR system is 3.00% and corresponds to β = 0.9, and

R2 = 4% (where ρuw = −0.95 in both cases). This result is consistent with the intuition

that the CIR system is more suited for lower levels of R2 (as µ would have a lower

variance) and thus with a less a stringent condition on ρuw to yield a dominant change

effect. Furthermore, it also suggests that the CIR system may imply an expected return

process with lower persistence, a result confirmed by the posterior distribution of β of

the Bayesian analysis of the next section (3.3).

Also, we note that for all values considered for the R2 of the regression of rt+1 on

µt, for both AR and CIR systems, the R2
OS are positive when ρuw is below its knife-edge
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value (except the case β = 0.8, R2 = 4%, 5% and ρuw = −0.95 for the CIR system16).

Table 2 presents a summary of the highest and lowest R2
OS obtained for each system as

well as the corresponding parameters set. For both systems, the highest R2
OS are obtained

with ρuw = −0.95 (3% and 3.39% respectively for the AR and CIR system), whereas the

lowest R2
OS are obtained for ρuw = 0.95 (−5.81% and −5.62% respectively for the AR

and CIR system). This result indicates that Pástor and Stambaugh (2009)’s believe that

the change effect should dominate, is also consistent with the CIR system.

It is also interesting to notice that in all configurations with ρuw ≥ 0 (only level effect)

the less negative R2
OS are obtained with the CIR system for all priors of R2 considered.

In the next section, we explore the performance of both systems, considering differ-

ent out-of-sample periods and different priors on the parameters. The results presented

thereafter confirm the suggestions above.

3.3 Out-of-sample return prediction using Bayesian parameters

estimates

Using the same data as in section 3.2, we conduct now an out-of-sample analysis of

both predictive systems using the Bayesian parameter estimation procedure of Pástor

and Stambaugh (2009). This procedure allows incorporating parameter uncertainty and

specifying less informative prior distributions. Posterior distributions for the parameters

are obtained using Gibbs sampling (see for instance Kim and Nelson, 1999). Following

Pástor and Stambaugh (2009), we estimate the predictive systems parameters by simu-

lating 76000 posterior draws, dropping the first 1000 as a “burn-in” period and take every

third draw from the rest to obtain 25000 posterior draws. The overall Markov Chain

Monte Carlo (MCMC) procedure and the posterior distributions for the AR system are

described in the internet appendix of Pástor and Stambaugh (2009). We refer the reader

to Appendix D for further details on the Bayesian parameter estimation procedure and

the posterior distributions in the CIR system.

The predictive systems parameters are re-estimated on the first available date of each

year in the sample, while predictions (estimates of µ) are computed each quarter using

the data available at each point in time (thus running the filter with the same parameters

over the year).

16The poor values of the R2
OS for the CIR system, for “large”R2 (3%, 4%, 5%) and ρuw = −0.95, are

mainly due to the first prediction which is very high given the negative return of −26.79% in 1974-Q3.
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For the AR system, the priors distributions used are identical (except for Er, see

below) to those described in section B.5 of the internet appendix of Pástor and Stambaugh

(2009). We thus refer to their initial paper for more details and provide only a brief

description of the distributions. The prior for β, plotted in Panel B of Figure 9, is

chosen to capture the belief that µ is persistent, i.e., β is smaller than one but not by

much17 β ∼ N (0.99, 0.152) × Iβ∈(0,1). The prior on Er is slightly modified in order to

use the same prior as the CIR system18: Er ∼ N (r̄, σ2
Er

), where r̄ denotes the mean of

the returns {rt} available at the date of estimation and σEr is choosen as described in

section 3.1. We consider three prior distributions for σw, plotted in Panel B, D and F of

Figure 8. The submatrix Σ11 =

 σ2
u σuw

σwu σ2
w

 has, for each prior, an inverted Wishart

distribution: Σ11 ∼ IW (T0Σ̂11,0, T0), where T0 is equal to one fifth of the available return

sample size. The prior mean E(Σ11) is set according to: 1) a prior value R̄2 for its

diagonal elements, and 2) our priors on ρuw (see below) for the non-diagonal elements19.

The three different priors on σw, corresponding to different priors on the R2 (and the

variance of µ), are obtained by setting E(σ2
µ) equal to a given percentage of the prevailing

sample return variance σ̂r
2, i.e., E(σ2

µ) = R̄2σ̂r
2 and E(σ2

u) = (1− R̄2)σ̂r
2 for R̄2 equal to

2.5% (less predictability prior), 5% (prior used in Pástor and Stambaugh, 2009, denoted

hereafter benchmark prior) and 10% (more predictability prior). The corresponding prior

distributions of the R2 are presented respectively in Panel A, C and E of Figure 8.

Moreover, we consider two priors on ρuw used in Pástor and Stambaugh (2009), which

are presented in Panel A of Figure 9: noninformative (flat between -0.9 and 0.9) and

more informative (most of the mass below -0.71).

The priors used for the CIR system are the same for ρuw, β and R2. The latter implies

a prior distribution with higher levels of σw as shown in Panels B, D and F of Figure 8

and explained in section 2.5. As described in detail in section 3.1, the prior distribution

of Er used here for both the CIR and AR systems, is slightly different from the prior used

in Pástor and Stambaugh (2009); thought we use the same method to estimate the mean,

we use a lower variance, in order to preclude negative value draws for the long-term mean

17Iβ∈(0,1) denotes here the indicator function equal to 1 if β ∈ (0, 1) and 0 otherwise. In our case, this

corresponds to retain only draws of β satisfying the condition.
18We also tried to use the initial prior for Er used in Pástor and Stambaugh (2009) for the AR system,

i.e., Er ∼ N (r̄, 0.012), but the out-of-sample results were poorer, i.e., negative R2
OS for the AR system.

19We refer to page 9 of the internet Appendix of Pástor and Stambaugh (2009) for a description of

the prior draw procedure of the non-diagonal elements.
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of expected returns Er.

Again, we use the R2
OS, described in section 3.2, to assess the out-of-sample pre-

dictability of the systems. The statistical significance of R2
OS is assessed using the FMSE

statistic proposed by McCracken (2007), which tests for equal MSE of the historical

mean and system’s conditional forecasts. It is given by:

FMSE = (T − s0)
(MSEmean −MSEpred)

MSEpred
, (29)

where T stands for the total size of the sample periods and s0 for the initial calibration

sample. In our tables we use ∗, ∗∗ and ∗ ∗ ∗ to indicate statistical significance at 10%,

5% and 1% levels respectively.

The results are presented in Table 3 for four out-of-sample periods. The first one is the

longest and is the same period considered in section 3.2 with point estimates: 1975-2012.

We also consider three additional out-of-sample periods of 25 years, whose starting dates

are spaced by 5 years: 1975-2000, 1980-2005, 1985-2010.

There are four clear conclusions from the results, 1) the more informative prior on

ρuw implying a dominant change effect improves out-of-sample return forecasts for both

systems, 2) for all periods and predictability priors considered, using the more informative

prior on ρuw, the CIR system yields better out-of-sample estimates than the AR system,

3) for both systems, the highest R2
OS for each out-of-sample period are obtained using

different priors on the R2 of the regression of rt+1 on µt, 4) the CIR system using the

more informative prior on ρuw yields significantly better out-of-sample predictions than

the prevailing historical average for all out-of-sample periods considered, for at least one

R2 prior (the R2
OS is significant in 10 out of 12 priors and sample periods combinations

considered).

Indeed, a comparison of the R2
OS obtained with the noninformative prior and the more

informative prior on ρuw for each system suggests that ρuw is more likely to be negative.

For instance, in the longest out-of-sample period 1975-2012 (first panel of Table 3), the

results obtained with the less predictability prior (prior on R2 leading to the best results

for both systems on this period), for the AR system, using the more informative prior

on ρuw instead of the noninformative, leads to an increase of the R2
OS from -1.03% to

0.28%. Although the sign of the latter R2
OS is positive, the AR system predictions do not

outperform significantly the prevailing historical average in terms of MSE. Regarding the

CIR system, the noninformative prior on ρuw yields an R2
OS of -0.30%, less negative than

the AR system in this configuration but implying prediction errors still greater than the

historical mean. On the other hand, using the more informative prior leads to a positive

27



R2
OS of 1.21%, significant at the 5% level. Consequently using the CIR system with the

more informative prior on ρuw produces significantly more accurate predictions than the

historical mean of returns, which is not the case when using the original AR system in

this case. The conclusions regarding the benefits of using the more informative prior on

ρuw are confirmed by the results obtained for each out-of-sample sub period considered,

and for each prior on R2.

We also observe on Table 3 that, the highest R2
OS for the CIR system is systematically

greater than that of the AR system (for all periods), confirming results of section 3.2: there

exist benefits in terms of out-of-sample prediction in using the CIR system instead of the

AR system. Hence, the new features of the CIR system (conditional heteroscedasticity

and non-negativity of expected returns) are consistent with the dynamic of the true

unobservable expected return process.

Moreover, for both systems, we note that the prior on R2 leading to the highest R2
OS is

different for each out-of-sample period considered. In other words, assuming that return

predictability is lower or higher implies better out-of-sample estimates, depending on the

period. Thus result suggest that the predictability of returns is in fact time-varying,

which is in line with findings in Rapach et al. (2010) and Henkel et al. (2011). This

result also suggest that the outperformance of the CIR system with respect to the AR

system in our Bayesian analysis may be explained by the fact that the modified system

incorporates expected returns heteroscedasticity.

Additionally, for all out-of-sample periods considered, using the more informative

prior on ρuw leads to positive R2
OS for both models for at least two of the priors on

R2. However, the significant R2
OS are obtained for all periods for the CIR system (with

different predictability priors on R2), but only for two out-of-sample periods for the AR

system (1975-2000 and 1980-2005).

Figure 10 presents for the longest out-of-sample period (1975-2012), the evolution

of the posterior mean of the parameters β and ρuw (re-estimated on the first available

date of each year in the sample) using the less predictability prior20 on R2 and the more

informative on ρuw. We observe first that the average levels of these parameters differ for

the AR and the CIR systems, and second that the posterior means are stable throughout

the out-of-sample period for the AR system whereas they vary over time for the CIR

system. Hence, the latter observation suggests that the true values of parameters of the

system may change over time.

20Conclusions are similar using the benchmark prior and more predictability priors on R2 (unreported).
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We notice on Panels A and B of Figure 10 that the posterior mean of β for the CIR

system (ranging from about 0.8 to 0.4) is always lower than its equivalent in the AR

system (which is stable around 0.9). This observation suggests a less persistent expected

return process for the CIR system and confirms the results obtained using point estimate

parameters in section 3.2. Moreover, unlike for the AR system, the posterior mean of

β for the CIR system is obviously not constant over time: β is stable around 0.6 from

1975 to 1982, increases to 0.7 by 1986, and then declines smoothly to 0.4 by 2012. This

decrease in the level of β explains the progressively lower R2
OS observed in the latest two

sub periods (1980-2005 and 1985-2010). To see this, notice that according to equation

(14), the lower β, the lower the proportion of returns variance explained by expected

returns.

Furthermore, Figure 12 presents the evolution of the sample autocorrelation of returns

at lag 1, using the available returns sample at each point in time. The similarity with

the Panel B of Figure 10 is striking. Indeed, the CIR system, through the parameter β

captures the fact that returns autocorrelation is not constant over time. A decrease in

the latter is related to a decrease in the persistence parameter of expected returns using

the CIR system.

Another divergence between the systems is observed on Panels C and D of Figure 10,

where the posterior mean of ρuw is more negative for the AR system: between -0.6 and

-0.8, than for the CIR system: between -0.2 and -0.5. This observation also confirms

the results obtained in section 3.2: the value of ρuw should be closer to zero if we adopt

the CIR system as the predictive model. Interestingly, similarly to the parameter β,

the posterior mean of ρuw is relatively constant over time for the AR system while it is

time-varying for the CIR system. Indeed, for the latter, the variations of ρuw in Panel

D are virtually the mirror image of the variations of β in Panel B (sample correlation of

-0.86 between the posteriors of β and ρuw), meaning that, as β decreases, the correlation

between expected and unexpected returns becomes less negative.

These conclusions are confirmed by Figure 11, which presents the posterior distribu-

tions of parameters ρuw and β, corresponding to the estimations for 1992 and twenty

years later in 2012 (last estimation). While the posterior distributions for the AR system

are substantially the same, there exist clear differences for the CIR system between the

two dates of estimation. Posteriors for ρuw are shifted to zero (less negative) between

1992 and 2012, as well as posteriors for β (much less close to one). Indeed, for the CIR

system, in 1992, most of the mass of the distribution is below zero for ρuw, and between

0.6 and 1 for β. This is no longer the case in 2012, when the distribution of ρuw is much
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more neutral (less clearly negative, although the negative part is still heavier than the

positive one), and posterior values of β are spread from 0 to 1 with a mode around 0.5.

In summary, the evolution of the posterior distributions and posterior means of the

CIR system parameters highlight two differences with the AR system. First, the shape

of the posterior distribution of β actually changes over the period studied, and the per-

sistence of expected return steadily decreases during the last thirty years of our sample.

This behavior is consistent with the autocorrelation of realized returns (at lag 1) which

presents a similar decreasing trend over the period. Second, the posterior distribution of

ρuw also varies throughout the sample, and it gradually becomes less negative toward the

end of the sample.

Conclusion

The predictive system introduced by Pástor and Stambaugh (2009) provides a rich envi-

ronment to estimate and analyse expected returns estimates and their relationship with

past realized returns. The original version of the system assumes an AR(1) dynamic for

the expected excess return process, which allows negative values and implies a constant

conditional variance.

However standard equilibrium models with risk-averse investors predict non-negative

expected excess returns on the market, and several empirical studies such as Rapach et al.

(2010), and Henkel et al. (2011) found that return predictability in the stock market is

stronger during recessions. The latter finding, together with the fact the variance of

realized returns also increases during recessions implies that the conditional variance of

expected returns must increase in economic downturns.

This paper introduces a modified version of the predictive system in which the ex-

pected returns process are unlikely to be negative and present a time-varying conditional

variance, without any additional parameters. We find that the modified system with-

out predictors can explain the counter-cyclical variations in the predictive power of the

dividend-price ratio documented by Rapach et al. (2010), and Henkel et al. (2011).

Additional theoretical and empirical implications of the modified system include: 1) a

lower variance of expected returns, 2) an expected return process with lower persistence

than in the original system, 3) a less negative correlation between expected and unex-

pected returns, and 4) a varying conditional variance of realized returns produced by the

system that is likely to be negatively correlated with realized returns. The former two
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implications are consistent with well documented features of stock returns, the first is

in line with the optimal shrinkage forecasting methodology in Connor (1997), while the

second is consistent with implications of the present-value model in Van Binsbergen and

Koijen (2011). Furthermore, in out-of-sample tests we find that the modified system can

produce significantly better return predictions than the historical average, and using a

Bayesian approach, better forecasts than the original system.

In our Bayesian parameter estimation of the modified system, we also find that the

persistence of expected returns is not constant over time and has steadily decreased for

thirty years, in tandem with the sample autocorrelation of realized returns. Also, in our

system the correlation between expected and unexpected returns becomes less negative

toward the end of the sample period. These findings suggest that interesting further

extensions of the the system would be an expected return process with a persistence

parameter explicitly varying over time, and a time-varying correlation between realized

and expected returns.

Appendix

A Discretization of CIR process

The Cox et al. (1985) (CIR) model is defined by the following Stochastic Differential

Equation (SDE):

dXt = κ(θ −Xt)dt+ σ
√
XtdWt, X0 ≥ 0, (30)

where κ, θ and σ are constants, and W is a standard Brownian motion. This SDE has a

level dependent diffusion term (σ
√
Xt) implying a conditional heteroscedasticity for the

process X. Furthermore, the model can rule out negative values for X. Indeed, given

that κ is a Lipschitz constant for the drift term of (30), Feller’s test (c.f. Feller, 1951)

for univariate stochastic process ensures that the following condition κθ ≥ σ2

2
implies

P(τx0 = ∞) = 1, where τx0 = inf {t ≥ 0 : Xt = 0} and x refers to the case X0 = x ≥ 0.

Details are given in Berkaoui, Bossy, Diop, et al. (2008).

The CIR equation (30) does not have an explicit closed-form solution for the process

X, which is inconvenient to develop the economic intuition of the model. A direct Euler

discretization of (30) is:

µt+∆t = µt + κ(θ − µt)∆t+ σ
√
µt(Wt+∆t −Wt). (31)
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However process (31) does not have a strictly zero probability of being negative as the

Gaussian increment is not bounded from below and it is important to notice that the

term
√
µt is not defined for a given µt < 0. Hence in our numerical filtering procedures

(application of algorithm described in section C), we use instead the following discretiza-

tion:

µt+∆t = µt + κ(θ − µt)∆t+ σ
√
|µt|(Wt+∆t −Wt). (32)

Berkaoui et al. (2008) show that for the process defined by (32), for all t given µη(t) = x,

where x is a positive value and η(t) is the closest previous step of discretization, the

following probability inequality applies

Pxcir = P(µt ≤ 0 | µη(t) = x) ≤ 1

2
exp

(
− x

8σ2∆t

)
; (33)

thus, x being sufficiently above zero and/or taking time steps ∆t sufficiently small, greatly

lowers the chance of µt of becoming negative. Notice that, for the AR system, the value of

the conditional probability P(µt ≤ 0 | µt−1 = x) has the following expression if we assume

that µ has the AR(1) dynamics given by equation (2) in the text:

Pxar = P (wt ≤ −(1− β)Er − βx) = Φ

(
−(1− β)Er − βx

σw,ar

)
, (34)

where Φ stands for the cumulative distribution function of a standard Gaussian random

variable. For instance, setting x = 0.5% and considering parameter values used in section

2.4, (33) and (34) lead to P0.005
cir ≤ 5 × 10−5 and P0.005

ar = 0.22. This result is confirmed

visually by expected returns presented in Figure 2.

Throughout our economical analysis we assume that actual realizations of the process

µ, given by equation (31), are non-negative. This is a reasonable assumption given the

fact that µ is an unobservable process and that the non-negativity assumption is one of

the two motivations for using a discretized CIR process instead of the original AR(1)

process. On the other hand, if the aim would be to simulate the CIR-type process µt

(instead of estimating it), a more adapted equation for this purpose would be for instance

the symmetrized Euler scheme of (30), studied by Bossy, Diop, et al. (2007):

µ̂t+∆t =
∣∣∣µ̂t + κ(θ − µ̂t)∆t+ σ

√
µ̂t(Wt+∆t −Wt)

∣∣∣ , (35)

which ensures the positivity of the discretized process21. However discretization (35)

does not allow to explore all the economic implications of the model, as we are unable to

21Alfonsi (2005) discusses several discretization schemes for the simulation of the CIR processes.
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derive closed-form solutions for the autocovariance of returns (equation 10 in the text)

and the variance of µ, for instance. Thus, in order to develop the economic implications

of the expected return positivity condition on the predictive system we work with the

CIR discretization (31) and assume that any actual path of µ remains positive in our

analysis.

B Autocovariance of returns

In this section we derive the autocovariance of returns using equation (1) in the text. We

assume first the following (more general) dynamics for µ:

µt+1 = (1− β)Er + βµt + g(µt)wt+1, (36)

where g is a general function including the case g(.) =
√

(.) or g(.) =
√
|.|.

Notice that the autocovariance of returns at lag k ≥ 0 is:

Cov(rt+k, rt) = Cov(µt+k−1 + ut+k, µt−1 + ut)

= Cov(µt+k−1, µt−1) + Cov(µt+k−1, ut). (37)

The first term on the right hand side of equation (37) is the autocovariance of expected

returns at lag k. Using equation (8) (with
√

(.) expressed as g(.)) the autocovariance of

µ is equal to:

Cov(µt+k, µt) = Cov

(
∞∑
j=0

βjwt+k−jg(µt+k−1−j),
∞∑
i=0

βiwt−ig(µt−1−i)

)

=
∞∑
j=0

∞∑
i=0

βi+jCov (wt+k−jg(µt+k−1−j), wt−ig(µt−1−i))

=
∞∑
j=0

∞∑
i=0

βi+jE [wt+k−jg(µt+k−1−j) wt−ig(µt−1−i)] .

To see this notice that the product of expectations is zero in the covariance due to the

lag between the noise terms and the terms containing g(µ) (which are independent).

Moreover, the only nonzero terms in the sums are when j = i+ k. Thus we obtain:

Cov(µt+k, µt) =
∞∑
i=0

β2i+kσ2
wE
[
g(µt−1−i)

2
]

= βkσ2
w

∞∑
i=0

β2iE
[
g(µt−1−i)

2
]
. (38)
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Equation (38) easily simplifies to βk
(
σ2
wEr

1−β2

)
and allows us to compute the variance of

µ when g(.) =
√

(.) as in section 2.3 of the text. Note that this result is valid if the

trajectory of µ stays positive at all time such that the term
√
µt is well defined for all t.

However, as explained above, using a discretization of a CIR process (with a Gaussian

noise) introduces a bias that could lead to eventual negative values (with low probability,

cf. Appendix A) forcing us to consider the case g(.) =
√
|.|. In order to check that the

use of this function g(.) (defined for all real numbers) in our empirical analysis does not

alter the analytical properties of the model, we derive here the autocovariance in this

particular case which has to be linked with equations (10) and (11) of the text. The

derivation of the second term of the right hand side of (37) yields to:

Cov(µt+k−1, ut) = Cov

(
∞∑
i=0

βiwt+k−1−i
√
|µt+k−2−i|, ut

)

=
∞∑
i=0

βiCov(wt+k−1−i
√
|µt+k−2−i|, ut)

=
∞∑
i=0

βiE[wt+k−1−i
√
|µt+k−2−i| ut],

where the only nonzero term is obtained when i = k − 1. Thereby,

Cov(µt+k−1, ut) = βk−1E[wt
√
|µt−1| ut] = βk−1σuwE[

√
|µt−1|]. (39)

The autocovariance of µ is now:

Cov(µt+k, µt) =
∞∑
i=0

β2i+kσ2
wE|µt−1−i| = βkσ2

w

∞∑
i=0

β2i {E(µt−1−i) + E (|µt−1−i| − µt−1−i)}

= βk
(
σ2
wEr

1− β2

)
+ βkε, (40)

where ε = σ2
w

∑∞
i=0 β

2iE (|µt−1−i| − µt−1−i) represents the negligeable imperfection error

(cf. Proposition 1 below). This leads to:

Cov(rt+k, rt) = βk−1

{
β

(
σ2
wEr

1− β2

)
+ σuwE(

√
|µt−1|)

}
+ βkε. (41)

Proposition 1 Let the expected return process follow the equation,

µt+1 = (1− β)Er + βµt +
√
|µt|wt+1,
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where wt ∼ N (0, σw), Er > 0 and β ∈ (0, 1). The following result holds

ε = σ2
w

∞∑
i=0

β2iE (|µt−1−i| − µt−1−i)→ 0

as ∆t → 0, with n → ∞ and n∆t → ∞, where the time index t + k (in the time series

notation) corresponds to the time (n + k)∆t, for k ∈ {0, 1, 2...}. Moreover, the term βk

factor of ε in (41) further increases the convergence to zero.

Proof:

ε = σ2
w

∞∑
i=0

β2iE
(
|µ(n−1−i)∆t| − µ(n−1−i)∆t

)
= −2σ2

w

∞∑
i=0

β2iE
(
µ(n−1−i)∆t

)−
= −2β2nσ2

n−1∑
i=−∞

∆tβ−2(i+1)E (µi∆t)
− ,

where we use the fact that σ2
w = σ2∆t. This is of the form:

κE[〈νn−1, f〉],

where f(x) = (x)− and

νm(ω, dx) =
1

Hm

m∑
i=−∞

β−2(i+1)I{µi∆t(ω)∈dx}

with

Hm =
m∑

i=−∞

β−2(i+1) = β−2(m+1)

∞∑
i=0

β2i =
β−2(m+1)

1− β2
=

β−2(m+1)

2κ∆t− κ2∆t2
≤ β−2(m+1)

κ∆t
,

where we have used the equality β = (1− κ∆t). Assume ∆t = α(n)→ 0, with n→ +∞
and n∆t→ +∞. Combining the weak convergence Theorem 2 of Pages, Panloup, et al.

(2009) with the estimation of strong convergence of the symetrized Euler scheme using µ

for X in Berkaoui et al. (2008), we get that for any continuous bounded function f

1

Hn

n∑
i=−∞

β−2(i+1)f(µi∆t)
n→+∞−−−−→

∫
R+

f(x)ν0(dx) = 0, a.s.,

where ν0 is the unique invariant measure of the CIR process (Gamma-type law). Due to

the fact that the support of the function f(x) = (x)− is R−, and the support of a Gamma

law is (0,∞), the integral and thus the limit of ε is equal to zero. �
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On the other hand, assuming the positivity of the previous value of µ and removing

the absolute value within the square root, the derivation of the autocovariance of returns

is simpler and yields to:

Cov(rt+k, rt) = βk−1

{
β

(
σ2
wEr

1− β2

)
+ σuwE(

√
µt−1)

}
. (42)

According to Proposition 1, the autocovariance of the process with g(.) =
√
|.| boils down

to equation (42) for µt−1 ≥ 0, which is equation (10) in the text.

C The Kalman filter

As mentioned earlier in the text, in this paper our analysis is performed without predic-

tors, given that we focus on the implications arising from a modified interaction between

past returns and expected returns. In this section we describe the procedure to estimate

the unobservable process µ based on observations of both r and x, so that further works

could be eventually conducted with predictors. The configuration investigated in the text

corresponds simply to not consider the terms related to x in this section. In the next

paragraph we present the algorithm for a state process {µt} with dynamics described by

equation (36) above. To do this, we use an extended version of the Kalman filter (see

Anderson and Moore, 2012, Chap. 8), to which we add the predictors {xt} in order to

present the estimation procedure of the full system including eventual predictors. The

Kalman filter theory relies on the assumption that, conditional to the information avail-

able at time t − 1, denoted here Dt−1, i.e., Dt−1 = (r1, x1, r2, x2, ..., rt−1, xt−1), the state

variable µt has a Gaussian distribution. This assumption must also hold conditioned on

Dt. In the configuration described above, using the extended Kalman filter consists in

linearizing the function g around our last estimation of µ, i.e., replacing the term g(µt)

by g (E(µt|Dt)) in our procedure.

C.1 The algorithm

Following Pastor and Stambaugh (2009), we use the following notations:

zt =

 rt

xt

 , at = E(µt|Dt−1), bt = E(µt|Dt), ft = E(zt|Dt−1), Pt = Var(µt|Dt−1),

Qt = Var(µt|Dt), Rt = Var(zt|µt, Dt−1), St = Var(zt|Dt−1), Gt = Cov(zt, µt|Dt−1).
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Initialization We assume conditioning on the (unknown) parameters even if not ex-

plicitly specified and that D0 denotes the null information.

Assuming that µ1 ∼ N (Er, Vµ) and r1 ∼ N (Er, Vr), given Vx, Vrx, Vrµ, Vxµ, we have first

a1 = Er, P1 = Vµ, f1 = [Er Ex]
′, S1 =

 Vr Vrx

Vrx Vx

 , G1 = [Vrµ Vxµ]′,

R1 = S1 −G1P
−1
1 G′1,

Q1 = P1(P1 +G′1R
−1
1 G1)−1P1,

b1 = a1 + P1(P1 +G′1R
−1
1 G1)−1G′1R

−1
1 (z1 − f1).

Iteration We use the extended Kalman filter algorithm to derive, for t = 2, ..., T ,

at = (1− β)Er + βE(µt−1|Dt−1) + E(g(bt−1)wt|Dt−1) = (1− β)Er + βbt−1. (43)

Pt = Var((1− β)Er + βµt−1 + g(bt−1)wt|Dt−1)

= β2Var(µt−1|Dt−1) + Var(g(bt−1)wt|Dt−1) + 2βCov(µt−1, g(bt−1)wt|Dt−1)

= β2Qt−1 + g(bt−1)2σ2
w. (44)

We have:

St =

 Var(rt|Dt−1) Cov(xt, rt|Dt−1)

Cov(rt, xt|Dt−1) Var(xt|Dt−1)

 =

 Qt−1 + σ2
u σuv

σvu Σvv

 (45)

Gt =

 G1
t

G2
t

 ,
with

G1
t = Cov(µt−1 + ut, (1− β)Er + βµt−1 + g(bt−1)wt|Dt−1)

= βQt−1 + Cov(µt−1, g(bt−1)wt|Dt−1)

+ βCov(ut, µt−1|Dt−1) + Cov(ut, g(bt−1)wt|Dt−1)

= βQt−1 + g(bt−1)σuw,
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and

G2
t = Cov((I − A)Ex + Axt−1 + vt, (1− β)Er + βµt−1 + g(bt−1)wt|Dt−1)

= Cov(vt, g(bt−1)wt|Dt−1)

= g(bt−1)σvw.

Finally,

Gt =

 βQt−1 + g(bt−1)σuw

g(bt−1)σvw

 . (46)

The last terms are functions of those previously computed:

Rt = St −GtP
−1
t G′t, (47)

Qt = Pt(Pt +G′tR
−1
t Gt)

−1Pt, (48)

ft =

 E(µt−1|Dt−1)

(I − A)Ex + Axt−1

 =

 bt−1

(I − A)Ex + Axt−1

 . (49)

The filtering term bt is given by

bt = at + Pt(Pt +G′tR
−1
t Gt)

−1G′tR
−1
t (zt − ft) = at +G′tS

−1
t (zt − ft). (50)

As in Pastor and Stambaugh (2009), denote

[mt n
′
t] = Pt(Pt +G′tR

−1
t Gt)

−1G′tR
−1
t = G′tS

−1
t

= Cov(z′t, µt|Dt−1)[Var(zt|Dt−1)]−1

= [βQt−1 + g(bt−1)σuw g(bt−1)σvw]

 Qt−1 + σ2
u σuv

σvu Σvv

−1

. (51)

Notice that the terms defining mt (and nt) depend on g(bt−1), which suggests a higher

time dependence with respect to the terms in Pástor and Stambaugh (2009) setting. This

implies that the level and change effect might have a more variable relative importance

over time in our setting relative to the AR system.

From equation (50), we derive

bt = at + [mt n
′
t](zt − ft) (52)

= (1− β)Er + βbt−1 + [mt n
′
t]

 rt − bt−1

xt − (I − A)Ex − Axt−1

 (53)

= (1− β)Er + (β −mt)bt−1 +mtrt + n′tvt. (54)
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By repeated substitutions of the lagged values of (bt−Er) in equation (54) we obtain:

bt = Er +
t∑

s=1

λs(rs − bs−1) +
t∑

s=1

φ′svs, (55)

where λs = msβ
t−s and φs = nsβ

t−s and (rs − bs−1) = rt − E(rt|Dt−1) is the forecast

error. Equation (55) has the same structure than the equivalent expression in the original

predictive system of Pástor and Stambaugh (2009), but the coefficients ms and ns are

modified, leading to different predictions. Equation (55) can be rewritten as a function

of past returns instead of past forecast errors as follows

bt = Er +
t∑

s=1

ωs(rs − Er) +
t∑

s=1

δ′svs, (56)

where,

ωs =

(β −mt)(β −mt−1) . . . (β −ms+1)ms , for s < t

ms , for s = t.

and

δs =

(β −mt)(β −mt−1) . . . (β −ms+1)ns , for s < t

ns , for s = t.

If Er is replaced by the sample mean in equation (56), it can be shown that the estimate

of bt is

b̂t =
t∑

s=1

κsrs +
t∑

s=1

δ′svs, (57)

where

κs =
1

t

(
1−

t∑
l=1

ωl

)
+ ωs, (58)

and
∑t

s=1 κs = 1. This expression has the same form than in the original predictive

system of Pástor and Stambaugh (2009), but the ωs are functions of ms, which has a

different expression in our setting that depends on the level of µs. To see this, develop

equation (54), add and subtract mtEr, rearrange terms and do backward substitution of

(bt − Er).

39



C.2 Steady state

Important results can be obtained assuming the system reach a steady state on the long

run. Note that the results of Pages et al. (2009) ensure the existence of a steady state

in the CIR discretization case, i.e., g(.) =
√
|.|. The expressions of the different elements

defined at the beginning of section C can be derived, at the equilibrium, removing the

subscripts t and t− 1 of equations (44) to (48). We obtain the following system to solve

for Q, the steady-state value of Qt:

P = β2Q+ g(b)2σ2
w, S =

 Q+ σ2
u σuv

σvu Σvv

 ,
G =

 βQ+ g(b)σuw

g(b)σvw

 , R = S −GP−1G′,

Q = P (P +G′R−1G)−1P.

After rearranging terms, this gives us the following quadratic equation for Q:

Q2 + ξ1Q+ ξ2 = 0, (59)

where

ξ1 = (1− β2)(σ2
u − σuvΣ−1

vv σvu) + 2g(b)β(σuw − σwvΣ−1
vv σvu)− g(b)2(σ2

w − σwvΣ−1
vv σvw)

= (1− β2)Var(u | v) + 2g(b)βCov(u,w | v)− g(b)2Var(w | v), (60)

and

ξ2 = g(b)2
(
(σuw − σwvΣ−1

vv σvu)
2 − (σ2

u − σuvΣ−1
vv σvu)(σ

2
w − σwvΣ−1

vv σvw)
)

= g(b)2
(
Cov(u,w | v)2 − Var(u | v)Var(w | v)

)
. (61)

The solution is thus the positive root of (59):

Q =

√
ξ2

1 − 4ξ2 − ξ1

2
. (62)

Moreover, using the value of Q given by (62) and equation (51), we obtain the steady-state

expressions of m and n:

m = (βQ+ g(b)Cov(u,w | v))(Q+ Var(u | v))−1, (63)

n′ = (g(b)σwv −mσuv)Σ−1
vv . (64)

40



D Bayesian procedure

This section describes the Bayesian analysis of the CIR predictive system. As in Appendix

C, we provide a description of the procedure for the full system, i.e., with eventual

predictors. As Pástor and Stambaugh (2009), we use an MCMC procedure to obtain the

posterior distribution of µ and θ the set of parameters, based on D the data available to

the investor. We alternate between drawing µ from the posterior distribution p(µ|θ,D)

and drawing the parameters θ from the posterior p(θ|µ,D).

D.1 Drawing µt

Given a set of parameters, we draw the time series of {µt} using the forward filtering,

backward sampling approach of Carter and Kohn (1994) and Frühwirth-Schnatter (1994).

The first stage consists in applying the Kalman filter procedure described above in section

C, with the current set of parameters. The sampling stage is the same as described in

section B3.2. of the internet appendix of Pástor and Stambaugh (2009). However, given

that one of the motivations to use a modified version of the original AR predictive system

is the belief that µt > 0, we choose to use a rejection sampling methodology, i.e., we

impose to each draw of µt to be positive at all times. Our procedure is the following,

at each time step µt is drawn using the distribution µt|µt+1, Dt which is Gaussian (due

to the use of the extended Kalman filter) and thus can lead to eventual negative values

(though rare, we have to consider this eventuality due to the discretization imperfection).

In the case where a negative value is drawn at a specific time step t∗ for µt∗ , we redraw

µt∗ using the same distribution until a positive values is obtained, i.e., we draw µt using

an acceptance-rejection method22.

D.2 Prior distributions

As mentioned in the text, the priors used in the case of the CIR system are very similar

to those in the AR system used by Pástor and Stambaugh (2009). Thus, we refer to its

internet appendix for a detailed description of the prior distributions. A brief description,

22In the case where after a maximum number of 500 trials µt∗ is still negative we reject the set of

parameters and the current draw of µ. We draw a new set of parameters to sample a whole new time

series of µt. The percentage of parameters rejection is relatively small in all configurations we tested. For

instance, using the benchmark prior on R2, the average rejection rate are 2.64% for the more informative

prior, and 3.3% for the noninformative prior, on the longest out-of-sample period.
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and a discussion of the slight modifications of Er prior due to the specification of the CIR

system, are done in section 3.1 of the text.

D.3 Posterior distributions

Conditional on the current draw of {µt}, the posterior distributions of the parameters

are the same as describe in section B5.2. of the internet appendix of Pástor and Stam-

baugh (2009), except the terms affected by the new dynamics of µ described below, the

others remain unchanged. In this section we denote as K the number of predictors (no-

tice that in the results presented in the text K = 0 as no predictor is used) and T the

last period at which returns are available for the estimation period of concern. We use

Exµ0 and Vxµ0 as notations for the prior mean and variance of the vector [Ex Er]
′. Let

Σ(vw) =

 Σvv σvw

σwv σ2
w

 and qt =

 xt

µt

 for t ∈ {1, 2, ..., T}.

Posterior of Ex and Er The posterior for Exµ = [Ex Er]
′ is still normal Exµ ∼

N (Ẽxµ, Ṽxµ) but with23

Ṽxµ =

(
V −1
xµ0

+
T−1∑
t=1

L′2Σ
g(µt)
(vw) L2

)−1

and Ẽxµ = Ṽxµ

(
V −1
xµ0
Exµ0 + L′2

T−1∑
t=1

Σ
g(µt)
(vw) (qt+1 − L1qt)

)
,

where L1 =

 A 0

0 β

, L2 =

 IK − A 0

0 1− β

 and Σ
g(µt)
(vw) = Σ(vw)◦

 1K×K g(µt)1K×1

g(µt)11×K g(µt)
2

.

Posterior of A and β The posterior of b = [vec(A′) β]′ is still the Gaussian distribu-

tion described in section B.5.2.1. of internet appendix of Pástor and Stambaugh (2009).

Using the same notation we have:

z = Zb + errors,

but the covariance matrix of the error terms is instead(
Σ(vw) ⊗ IT−1

)
◦ Λ1,T−1,

23The operator ◦ denotes the Hadamard product, also known as the element-wise product. IK is the

identity matrix with dimension K ×K. For integers m and n, 1m×n denotes a matrix with m rows and

n columns whose all entries are 1.
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where Λ1,T−1 is the following [(T − 1)(K + 1)]× [(T − 1)(K + 1)] matrix:


g(µ1) 1

. . .

1 g(µT−1)



1K(T−1)×K(T−1)
...


g(µ1) 1

. . .

1 g(µT−1)



g(µ1) 1

. . .

1 g(µT−1)

 . . .


g(µ1) 1

. . .

1 g(µT−1)



g(µ1)2 1

. . .

1 g(µT−1)2





,

which is equal to the matrix of the AR system except for the terms involving µ (i.e.,

bottom and right block of the matrix above).

Posterior of Σ We follow the decomposition of Pástor and Stambaugh (2009) by

changing variables from Σ =


σ2
u σuv σuw

σvu Σvv σvw

σwu σwv σ2
w

 to the set of (Σ11, C,Ω), where Σ11 =

 σ2
u σuw

σwu σ2
w

 and C and Ω are the slope and the residual covariance matrix of the

regression of v on (u,w). The procedure to draw (Σ11, C,Ω) remains the same, except

that given a draw of the time series of {µt}, and conditional on (Ex, A,Er, β), the sample

of residuals of {wt, t = 2, ..., T} is no longer the time series {µt − (1− β)Er − βµt−1, t =

2, ..., T} but
{
µt−(1−β)Er−βµt−1

g(µt−1)
, t = 2, ..., T

}
. Thus using g(.) =

√
|.| can lead to very large

observations of w in magnitude when the current value of µt−1 is close to zero. Thereby to

avoid using biased estimators of variances and covariances involving w, we use a robust

estimator to measure these terms. Specifically, let X denote the (T − 1) × 2 matrix

of [ut, wt] for t = 2, ..., T . Instead of using the classical estimator of variance for Σ11:

Σ̂11 = 1
T−1

(X ′X), we use the robust and widely used Minimum Covariance Determinant

Estimator (Fast MCD) of Rousseeuw and Driessen (1999) to compute Σ̂11. This method

gives a weight vector ω of size (T − 1)× 1 with entries 0 or 1 for each observation based

on a Mahalanobis distance criterium. Hence, in order to compute the parameters of the
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regression of v on (u,w) and derive the posterior distributions parameters of (Σ11, C,Ω)

described in section B5.2.2. of the internet appendix of Pástor and Stambaugh (2009),

we use the corresponding reweighted vector [ω ω] ◦X instead of X.

E Tables and Figures

R2 Er σr β k-e ρuw σµ σw,ar σw,cir σu

0.09% 1.77% 8.38% 0.90 −0.06 0.25% 0.11% 0.82% 8.38%

5% 1.77% 8.38% 0.90 −0.47 1.87% 0.82% 6.14% 8.17%

Table 1: Point estimate parameters for different levels of the R2 of the regression of rt+1 on µt. Er

and σr correspond to mean and standard deviation sample estimates for quarterly returns of the CRSP

aggregate US market index from 1952 to 2012, and β is taken as in Pástor and Stambaugh (2009) section

II.B. The following columns follow from the respective definitions in the text which are functions of

the first four columns; k-e ρuw stands for knife-edge value of ρuw. Given a value for R2 and assuming

E(
√
µt−1) ≈

√
Er, the knife-hedge value of ρuw is the same for both systems.

1975-2012 R2
OS β R2 ρuw

AR system

Best configuration 3.00% 0.9 4% -0.95

Worst configuration -5.81% 0.9 5% 0.95

CIR system

Best configuration 3.39% 0.8 2% -0.95

Worst configuration -5.62% 0.8 5% 0.95

Table 2: Out-of-sample results summary with point estimate parameters. Each line presents the highest

(or lowest) R2
OS obtained for each predictive system (AR or CIR), as well as the corresponding parameter

set. Predictions are computed on quarterly returns on the value-weighted portfolio of all NYSE, Amex,

and Nasdaq stocks in excess of the quarterly return on a 1-month T-bill obtained from CRSP. The sample

begins in 1952 and the out-of-sample period is 1975-2012. We use the prevailing returns average for Er.
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1975-2012 Less predictability

Prior on ρuw Noninf. More inf.

CIR R2
OS (%) -0.30 1.21**

AR R2
OS (%) -1.03 0.28

Benchmark prior

Noninf. More inf.

-0.73 1.07**

-1.54 0.13

More predictability

Noninf. More inf.

-1.26 0.71*

-2.23 -0.23

1975-2000 Less predictability

Prior on ρuw Noninf. More inf.

CIR R2
OS (%) -0.02 2.64***

AR R2
OS (%) -1.41 0.69*

Benchmark prior

Noninf. More inf.

-0.29 2.93***

-2.14 0.61*

More predictability

Noninf. More inf.

-0.66 3.01***

-3.13 0.18

1980-2005 Less predictability

Prior on ρuw Noninf. More inf.

CIR R2
OS (%) 0.41 1.48**

AR R2
OS (%) -0.12 0.52

Benchmark prior

Noninf. More inf.

0.11 1.51**

-0.34 0.62*

More predictability

Noninf. More inf.

-0.29 1.34**

-0.72 0.66*

1985-2010 Less predictability

Prior on ρuw Noninf. More inf.

CIR R2
OS (%) 0.04 0.80*

AR R2
OS (%) -0.20 0.04

Benchmark prior

Noninf. More inf.

-0.41 0.67

-0.39 0.04

More predictability

Noninf. More inf.

-0.96 0.30

-0.73 0.02

Table 3: Out-of-sample results of the predictive systems using the Bayesian procedure. For each out-of-

sample period, for both predictive systems, three priors on the R2 of the regression of rt+1 on µt (less

predictability, benchmark prior and more predictability) and two priors on ρuw (noninformative and more

informative) are applied. Predictions are computed on quarterly returns on the value-weighted portfolio

of all NYSE, Amex, and Nasdaq stocks in excess of the quarterly return on a 1-month T-bill obtained

from CRSP. Our sample begins in 1952-Q1. The predictive systems parameters are re-estimated on the

first available date of each year in the sample. Predictions are computed each new quarter using the

data available at each point in time.
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Figure 1: The effect of lagged returns on E(rt+1|Dt) when no predictors are used. This figures plots κs,

the weights on lagged total returns in E(rt+1|Dt) when the unconditional mean return is estimated by the

sample mean over the 244 quarters from 1952Q1 to 2012Q4. The different lines correspond to different

values of ρuw, the correlation between expected and unexpected returns (the flat line corresponds to

the knife-hedge value of ρuw, i.e., historical average as estimate of expected return). The autoregressive

coefficient is set to β = 0.9. In Panel A, corresponding to Pástor and Stambaugh (2009)’s predictive

system with AR(1) expected returns, the predictive R2 corresponding to the fraction of variation in rt+1

that can be explained by µt is set to 0.05. In Panel B, the CIR-based method estimates are calculated

using the same β and σw.
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Figure 2: Panel A presents the equity premium E(rt+1|Dt) = E(µt|Dt) from Pastor and Stambaugh’s

AR(1) predictive system, and Panel B and C the expected excess returns from our CIR-type predictive

system. This figures displays the time series of quarterly US stock market premium from 1952Q1 to

2012Q4 estimated for different values of ρuw (the flat line corresponds to the knife-hedge value of ρuw,

i.e., historical average as estimate of expected return). The autoregressive coefficient is set to β = 0.9

and the unconditional mean return Er is estimated by the sample mean over the whole sample. In Panel

A, the R2 corresponding to the fraction of variation in rt+1 that can be explained by µt is set to 5%. In

Panel B, the CIR-based method estimates are calculated using the same β and σw as in Panel A, leading

to an R2 equal to 0.09%. In Panel C, the R2 is set to 5%.
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Figure 3: Panel A plots the square root of estimates of Var(µt|Dt), where µt denotes the expected

stock return from time t to time t + 1 and Dt denotes the information set observed through time t.

The conditional variance of µ is presented for the CIR system and the AR system without predictors

and for the predictive regression using the dividend price-ratio as predictor. The sample considered is

1952Q1-2012Q4. The parameters used for the predictive systems corresponds to R2 = 5%, ρuw = −0.85

and β = 0.9. The unconditional mean Er is estimated with the sample mean over the whole period.

Panel B presents the ratio of the conditional variances of µt and rt+1 for both systems and the predictive

regression. The grayed areas correspond to economic recessions as reported by NBER.
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Figure 4: The log-cumulated returns and the conditional volatility of rt when no predictors are used.

This figure plots the cumulated returns of the market (log-value) and the square root of estimated values

of St = Var(rt|Dt−1), where rt+1 denotes the stock return from time t to time t+ 1 and Dt denotes the

history of returns observed through time t. The sample considered is 1952Q1-2012Q4. The conditional

volatility is estimated using the CIR and AR predictive systems with ρuw = −0.85. The autoregressive

coefficient is set to β = 0.9 and the unconditional mean return Er is estimated by the sample mean

over the whole sample. The predictive R2 corresponding to the fraction of variation in rt+1 that can be

explained by µt is set to 5% in both systems. The grayed areas correspond to economic recessions as

reported by NBER.
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Figure 5: The effect of lagged returns on E(rt+1|Dt) when no predictors are used. This figures plots

finite-sample values of κs, the weights on lagged total returns in E(rt+1|Dt). The samples considered

are 1952Q1-1999Q4 for Panels A and C, and 1952Q1-2002Q4 for Panels B and D. The autoregressive

coefficient is set to β = 0.9 and the unconditional mean return Er is estimated by the sample mean over

the quarters since 1952Q1. In both Panels, the predictive R2 corresponding to the fraction of variation

in rt+1 that can be explained by µt is set to 0.05.
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Figure 6: Out-of-sample results with point estimate parameters. Each Panel presents the R2
OS as a

function of ρuw when the R2 of the regression of rt+1 on µt is set to a given value. Predictions are

computed on quarterly returns on the value-weighted portfolio of all NYSE, Amex, and Nasdaq stocks

in excess of the quarterly return on a 1-month T-bill obtained from CRSP. The sample begins in 1952

and the out-of-sample period is 1975-2012. We use a constant β of 0.9 and the prevailing returns average

for Er. The grayed areas correspond to values of ρuw implying a dominant change effect (countercyclical

expected returns). 51
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Figure 7: Out-of-sample results with point estimate parameters. Each Panel presents the R2
OS as a

function of ρuw when the R2 of the regression of rt+1 on µt is set to a given value. Predictions are

computed on quarterly returns on the value-weighted portfolio of all NYSE, Amex, and Nasdaq stocks

in excess of the quarterly return on a 1-month T-bill obtained from CRSP. The sample begins in 1952

and the out-of-sample period is 1975-2012. We use a constant β of 0.8 and the prevailing returns average

for Er. The grayed areas correspond to values of ρuw implying a dominant change effect (countercyclical

expected returns). 52
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Figure 8: The prior distributions for R2 and σw used in the Bayesian analysis. Panels A and B plot

the prior on the R2 from the regression of rt+1 on µt and the corresponding prior on σw for both AR

system and CIR system, corresponding to less predictability prior. Panels C and D plot the distributions

corresponding to the benchmark prior. Panels E and F plot the more predictability prior distributions.
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Figure 9: The prior distributions for ρuw and β used in the Bayesian analysis. Panel A plots the two

prior distributions for ρuw: noninformative (flat between -0.9 and 0.9) and more informative (most of

the mass below -0.71). Panel B plots the prior on the autoregressive coefficient β in the dynamics of µ.
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Figure 10: Evolution of the mean of the posterior distributions of β and ρuw for the AR and CIR

predictive systems. The priors are more informative on ρuw and correspond to less predictability prior

on R2. The considered out-of-sample period is 1975Q1-2012Q4. Predictive systems are re-estimated on

the first available date of each year in the sample.
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Figure 11: Posterior distributions of β and ρuw for the AR and CIR predictive systems. The priors are

more informative on ρuw and correspond to less predictability prior on R2. The posterior distributions

are obtained from systems estimation in 1992-Q1 and 2012-Q1.
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Figure 12: Evolution of the autocorrelation at lag 1 of returns. Our sample corresponds to quarterly

returns on the value-weighted portfolio of all NYSE, Amex, and Nasdaq stocks in excess of the quarterly

return on a 1-month T-bill obtained from CRSP. The sample begins in 1952. Each quarter, we re-estimate

the autocorrelation at lag 1 using the available returns.
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